Heat and Related Properties:

Enthalpy

&

Heat Capacities
Enthalpy $\equiv H \equiv U + PV$

Greek: \textit{en} + \textit{thalpein} = “to heat in”

Sometimes “H” is referred to as “the heat content” of the system – I don’t like it!!

Significance

\[H = f(\text{state functions}) \quad \therefore \quad H \text{ is a state function:} \]

\[
\int_1^2 dH = H_2 - H_1 = \Delta H \quad \text{and} \quad \int dH = 0
\]

Significance of dH and of ΔH:

\[
dH = dU + \underbrace{d(P_{\text{in}}V)}_{[p_{\text{ex}}=P_{\text{in}}]} = dU + p_{\text{ex}}dV = dq + \underbrace{dw}_{p_{\text{ex}}dV} + p_{\text{ex}}dV = dq
\]

\[dH = dq_P \quad \Delta H = q_P \quad (\text{for reversible PV-work only})\]

\[dU = dq_V \quad \Delta U = q_V \quad (\text{for PV-work only})\]

The change in enthalpy (or internal energy) is the energy transferred as heat at constant P (or V).
Heating @ [P], @ [V]

\[dH = dq_P \]
\[\Delta H = q_P \] \hspace{1cm} \text{(reversible PV-work)}

\[dU = dq_V \]
\[\Delta U = q_V \] \hspace{1cm} \text{(PV-work)}

\(q_P = \text{Heating at [P]}: \)
\[T \uparrow, \ V \neq \text{const.} \]

\[q_V = \text{Heating at [V]}: \]
\[T \uparrow, \ P \neq \text{const.} \]

\(q_P \) vs. \(q_V \) \hspace{1cm} \text{(which is greater?)}

Difference between \(q_P \) and \(q_V \) is the difference between \(\Delta H \) and \(\Delta U \):

\[H \equiv U + PV \Rightarrow dH = dU + d(PV) \Rightarrow \Delta H = \Delta U + \int d(PV) \]
\[dq_P = dq_V + d(PV) \Rightarrow q_P = q_V + \int d(PV) \]

\[\int d(PV) = (PV)_2 - (PV)_1 = \Delta(PV). \text{ For an ideal gas: } \Delta(PV) = nR\Delta T \]

solid: \(\sim 0, \ [P,V \equiv \text{const.}] \)
Amount of heat needed to raise a certain amount of substance by 1°

\[C_s \equiv \text{specific heat capacity,} \quad \frac{\text{cal or J}}{\text{g} \cdot \text{deg}} \]

\[\bar{C} \equiv \text{molar heat capacity,} \quad \frac{\text{cal or J}}{\text{mol} \cdot \text{deg}} \]

For example:

For \(\text{H}_2\text{O}(l) \): \(C_s \approx 1 \text{ cal/g} \cdot \text{deg} \) \(\Rightarrow \) \(\bar{C} = \) _____________

Is “C” a state function?
\[C_P = \frac{dq_P}{dT}, \quad dq_P = dH \]
\[(rev\ PV\text{-work}) \]

\[C_V = \frac{dq_V}{dT}, \quad dq_V = dU \]
\[(PV\text{-work}) \]

Which is larger for a particular substance, \(C_P \) or \(C_V \)?

What about for solids?

\(C_P \) is directly dependent on the expansion ability of the substance:

Coefficient of thermal expansion

Thermal expansivity

Cubic expansion coefficient

\[\alpha \equiv \frac{1}{V} \left(\frac{\partial V}{\partial T} \right)_P \]
\((Note\ each\ factor) \)

For an ideal gas, \(\alpha = 1/T \)
(Do it!)
\[C_V = \left(\frac{\partial U}{\partial T} \right)_V \]
For any Pure Substance

\[C_v = \left(\frac{\partial U}{\partial T} \right)_v \]

For an Ideal gas:

\[C_v = \frac{dU}{dT} \]

\[C_p = \left(\frac{\partial H}{\partial T} \right)_p \]

\[C_p = \frac{dH}{dT} \]

For an Ideal gas:

\[C_p = \frac{dH}{dT} = \frac{d(U + PV)}{dT} = \frac{dU}{dT} + \frac{d(PV)}{dT} = C_v + nR \]

\[\overline{C_p} = \overline{C_v} + R \]
Notes:
The more complex the molecule,
1. the greater its C_P, and
2. the greater the increase with rising T.
\(\bar{C}_P \) as a function of Temperature from 300 to 1500 \(K \): \(\bar{C}_P = a + bT + cT^2 \)

<table>
<thead>
<tr>
<th>Molecule ((g))</th>
<th>(a / JK^{-1}mol^{-1})</th>
<th>(10^3b / JK^{-2}mol^{-1})</th>
<th>(10^7c / JK^{-3}mol^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(H_2)</td>
<td>29.066</td>
<td>-0.836</td>
<td>20.113</td>
</tr>
<tr>
<td>(O_2)</td>
<td>25.503</td>
<td>13.612</td>
<td>-42.553</td>
</tr>
<tr>
<td>(Cl_2)</td>
<td>31.696</td>
<td>10.144</td>
<td>-40.375</td>
</tr>
<tr>
<td>(N_2)</td>
<td>26.984</td>
<td>5.910</td>
<td>-3.376</td>
</tr>
<tr>
<td>(HCl)</td>
<td>28.166</td>
<td>1.809</td>
<td>15.465</td>
</tr>
<tr>
<td>(H_2O)</td>
<td>30.206</td>
<td>9.936</td>
<td>11.14</td>
</tr>
<tr>
<td>(CO_2)</td>
<td>26.648</td>
<td>42.262</td>
<td>-142.4</td>
</tr>
<tr>
<td>(CH_4)</td>
<td>14.143</td>
<td>75.495</td>
<td>-179.64</td>
</tr>
<tr>
<td>(C_2H_6)</td>
<td>9.404</td>
<td>159.836</td>
<td>-462.28</td>
</tr>
</tbody>
</table>

(many other tables for solids, liquids, gases)

Note: In some tables, \(C_P = a + bT + cT^2 \).
\[C_P^0 \text{ of } \text{SO}_2 \text{ vs. } T \]

\[
\left(\frac{\partial S}{\partial T} \right)_P = \frac{C_P}{T}
\]

(Alberty, p. 98)
\[
\left(\frac{\partial S}{\partial T} \right)_P = \frac{C_p}{T}
\]
Molecular Interpretation of C_V for an Ideal Gas

Molecular Energies Associated With Atomic (Nuclear) Motions

Each atom in a molecule can move independently in 3 basic directions, i.e., each movement can be described by a vector:

\therefore # of degrees of freedom for the movement of each atom in a molecule = 3

For N atoms in a molecule: Total # of degrees of freedom = 3N

But this seemingly chaotic atomic motion that is executed simultaneously by all of the atoms can be dissected into a set of ordered motions: Translation, Rotation, and Vibration.

$\text{Heat (thermal energy) mainly influences translational, rotational, and vibrational motions and not the high-lying electronic energy levels (}1\text{ eV} = 96,500\text{ J/mol}).$

$E_{\text{thermal}} \propto kT \text{ (per atom: KMT).}$

$RT \sim 2500\text{ J/mol, }298\text{ K}$

$E_{\text{vib},6} \sim 2640\text{ J/mol (}4000\text{ cm}^{-1})}$

$\text{Vib: } E_1 = \frac{1}{2} h \nu N_A \sim 720-72\text{ J/mol}$

$\text{Vib: } E_2 = \frac{1}{2} h \nu N_A \sim 240-24\text{ J/mol, wavenumber } \equiv \tilde{\nu} = 4000 - 400\text{ cm}^{-1}$

Tr

Rot
Total # of Degrees of Freedom for a molecule with N atoms = 3N

Translation:
Molecule moves as if “frozen”; movement of the center of mass as a vector.
of independent translational motions (along 3 axes) = 3

Rotation:
Whole molecule twists as a “frozen” block about axes of symmetry, without moving the center of mass.
For **non-linear** molecules, # of independent rotations (about 3 axes) = 3
For **linear** molecules, # of independent rotations (about 2 axes only) = 2
(No energy is needed to “spin” a linear molecule about the internuclear axis, because the atoms (as point masses) do not really move; no movement, no moment of inertia, I.)

Vibrations (the remaining motions):
Each atom can “twist & shout”:
Bonds are like “springs” and bond angles are flexible; bonds can stretch and contract, bonds can bend, etc., without moving the center of mass, and without rotating the molecule. So, here’s what’s left of the total 3N motions:
For **non-linear** molecules, # of independent motions = 3N–6
For **linear** molecules, # of independent motions = 3N–5

Examples for H₂O & CO₂ (continued)
Energies of Independent Motions for an Ideal Gas: Principle of Equipartition of Energy

Recall the results of the Kinetic Molecular Theory for an Ideal Gas:

K.E. of translation = \(\frac{3}{2} kT \) or \(\frac{3}{2} RT = 3(\frac{1}{2})RT \)

Axiom 1: Energy of each independent translational direction = \(\frac{1}{2}RT \).
(The total translational energy has been **equally partitioned** into 3 parts.)

Axiom 2: Energy of any independent motion (rotation or vibration) = \(\frac{1}{2}RT \).

Note:
Potential Energy of translation or rotation = 0
Intramolecular P.E. associated with every vibrational mode ≠ 0

Recall: The bond is a “spring” and a **restoring force** acts on it as it is stretching:

Hooke’s Law: \(F = -kx \), \(k \equiv \) force (or spring) constant \(\Rightarrow \) \(F = -d\phi/dr \), \(\phi = \text{P.E.} \)

<table>
<thead>
<tr>
<th>Motion</th>
<th>Molecule</th>
<th>KE</th>
<th>PE</th>
<th>U (total)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Translation</td>
<td>(any)</td>
<td>(3 \cdot (\frac{1}{2}RT))</td>
<td>0</td>
<td>(3 \cdot (\frac{1}{2}RT))</td>
</tr>
<tr>
<td>Rotation</td>
<td>Non-linear</td>
<td>(3 \cdot (\frac{1}{2}RT))</td>
<td>0</td>
<td>(3 \cdot (\frac{1}{2}RT))</td>
</tr>
<tr>
<td></td>
<td>Linear</td>
<td>(2 \cdot (\frac{1}{2}RT))</td>
<td></td>
<td>(2 \cdot (\frac{1}{2}RT))</td>
</tr>
<tr>
<td>Vibration</td>
<td>Non-linear</td>
<td>((3N-6) \cdot (\frac{1}{2}RT))</td>
<td>((3N-6) \cdot (\frac{1}{2}RT))</td>
<td>(2 \cdot (3N-6) \cdot (\frac{1}{2}RT))</td>
</tr>
<tr>
<td></td>
<td>Linear</td>
<td>((3N-5) \cdot (\frac{1}{2}RT))</td>
<td>((3N-5) \cdot (\frac{1}{2}RT))</td>
<td>(2 \cdot (3N-5) \cdot (\frac{1}{2}RT))</td>
</tr>
</tbody>
</table>

\[\therefore \text{For an ideal gas: } C_V = dU/dT \quad \& \quad C_P - C_V = R \]
Theoretical (Classical) vs. Experimental Heat Capacities

<table>
<thead>
<tr>
<th>Molecule</th>
<th>$U_{\text{translation}}/RT$</th>
<th>$U_{\text{rotational}}/RT$</th>
<th>$U_{\text{vibrational}}/RT$</th>
<th>U_{total}/RT</th>
<th>$\overline{C_V}/R$</th>
<th>$\overline{C_P}/R$</th>
<th>Experimental $\overline{C_P}/R$</th>
</tr>
</thead>
<tbody>
<tr>
<td>He</td>
<td>1.5</td>
<td>0</td>
<td>0</td>
<td>1.5</td>
<td>1.5</td>
<td>2.5</td>
<td>2.500</td>
</tr>
<tr>
<td>H$_2$</td>
<td>1.5</td>
<td>1</td>
<td>1</td>
<td>3.5</td>
<td>3.5</td>
<td>4.5</td>
<td>3.468</td>
</tr>
<tr>
<td>O$_2$</td>
<td>1.5</td>
<td>1</td>
<td>1</td>
<td>3.5</td>
<td>3.5</td>
<td>4.5</td>
<td>3.533</td>
</tr>
<tr>
<td>I$_2$</td>
<td>1.5</td>
<td>1</td>
<td>1</td>
<td>3.5</td>
<td>3.5</td>
<td>4.5</td>
<td>4.435</td>
</tr>
<tr>
<td>CO$_2$</td>
<td>1.5</td>
<td>1</td>
<td>4</td>
<td>6.5</td>
<td>6.5</td>
<td>7.5</td>
<td>4.466</td>
</tr>
<tr>
<td>H$_2$O</td>
<td>1.5</td>
<td>1.5</td>
<td>3</td>
<td>6</td>
<td>6</td>
<td>7</td>
<td>4.038</td>
</tr>
<tr>
<td>NH$_3$</td>
<td>1.5</td>
<td>1.5</td>
<td>6</td>
<td>9</td>
<td>9</td>
<td>10</td>
<td>4.285</td>
</tr>
<tr>
<td>CH$_4$</td>
<td>1.5</td>
<td>1.5</td>
<td>9</td>
<td>12</td>
<td>12</td>
<td>13</td>
<td>4.286</td>
</tr>
</tbody>
</table>

1. Heat mainly influences translational, rotational, and vibrational motions and **not** the high-lying electronic energy levels.
2. The classically calculated “C” assumes that **all** molecular motions contribute **equally** at **all** temperatures.
3. Experimental C’s: At low T, vibrational motions are negligible or small: $C_{\text{exp}} < C_{\text{class}}$.
 At high T, vibrations are important: $C_{\text{exp}} \sim C_{\text{class}}$.
4. As $T \rightarrow \infty$, real gas \rightarrow ideal gas.

© Prof. Zvi C. Koren 21.07.10
Heat Capacities of Atomic Solids

At Room and Higher Temps: Law of Dulong et Petit (1819)
For metallic elements, $C \sim 3R = 6 \text{ cal/mol}\cdot\text{deg}$ (actually 6 ± 0.3)

Consider an atom bound in an atomic crystal:

Each atom oscillates (with ν) about equilibrium position in 3 independent directions (no translations, no rotations):

$U_{\text{vib}} = \text{KE} + \text{PE} = 3(\frac{1}{2}RT) + 3(\frac{1}{2}RT) = 3RT$ (for a mole)

$C_V = \frac{dU}{dT} = 3R$

At Low Temps: Debye Theory (1912):

$\bar{C}_V \propto T^3$

Heat capacities of all atomic solids should lie on the same curve when C_V is plotted versus T/θ_D:

$\theta_D \equiv \text{Debye temperature} \equiv \hbar \nu/k_B$,

$\nu \equiv \text{frequency of oscillation} \equiv f(m,k)$,

$k \equiv \text{force constant}$

At low T ($\leq 15 \text{ K}$): $C_V = a(T/\theta_D)^3$.

Calculations: \(\Delta U = q_V \) from \(C_V \) & \(\Delta H = q_P \) from \(C_P \)

\[
\bar{C}_V = \frac{d\bar{q}_V}{dT} = \left(\frac{\partial \bar{U}}{\partial T} \right)_V
\]

\[dU = dq_V = n\bar{C}_VdT \Rightarrow \Delta U = q_V = n\int \bar{C}_VdT \quad (PV\text{-work only})\]

In general: \(\bar{C}_V = f(T) = a + bT + cT^2 + \cdots \) (or something similar)

If \(\bar{C}_V \approx \text{constant} \) \(\Rightarrow \) \(\Delta U = q_V \approx n\bar{C}_V\Delta T \) or \(mC_V\Delta T, [V, C_V] \)

\[
\bar{C}_P = \frac{d\bar{q}_P}{dT} = \left(\frac{\partial \bar{H}}{\partial T} \right)_P
\]

\[dH = dq_P = n\bar{C}_PdT \Rightarrow \Delta H = q_P = n\int \bar{C}_PdT \quad (\text{rev } PV\text{-work only})\]

In general: \(\bar{C}_P = f(T) = a' + b'T + c'T^2 + \cdots \) (or something similar)

If \(\bar{C}_P \approx \text{constant} \) \(\Rightarrow \) \(\Delta H = q_P \approx n\bar{C}_P\Delta T \) or \(mC_P\Delta T, [P, C_P] \)
Degrees of Freedom or Number of Independent Variables

Every substance has an **Equation of State**, which relates the **State Variables** \((P,V,T,n)\) to each other:

\[\therefore \text{Total # of degrees of freedom} = 3 \]

But, **for a given quantity “n”**, \# of degrees of freedom \(= 2\)

Thermodynamic Properties are State Functions that are expressed in terms of the **independent** state variables.

For example:

\[
U = U(P,T) \quad or \quad U = U(V,T) \quad or \quad U = U(P,V)
\]

\[
H = H(P,T) \quad or \quad H = H(V,T) \quad or \quad H = H(P,V)
\]

(continued)
\[U = U(V, T): \quad \frac{dU}{dT} \bigg|_V \, dT + \frac{dU}{dV} \bigg|_T \, dV = C_v \, dT + \pi_T \, dV \]

\[H = H(P, T): \quad \frac{dH}{dT} \bigg|_P \, dT + \frac{dH}{dP} \bigg|_T \, dP = C_p \, dT + \frac{dH}{dP} \bigg|_T \, dP \]

Internal pressure coefficient \(\equiv \pi_T \equiv \left(\frac{\partial U}{\partial V} \right)_T \) (note the units)

For an ideal gas: \(U = U(T) \) only! (Recall the Kinetic Molecular Theory)

\[\therefore \pi_T = \left(\frac{\partial U}{\partial V} \right)_T = 0 \quad \Rightarrow \quad dU = n\bar{C}_V \, dT \]

\[H = H(T) \) only! Proof: \(H \equiv U + PV = U(T) + nRT = H(T) \) only!

\[\therefore \left(\frac{\partial H}{\partial P} \right)_T = 0 \quad \Rightarrow \quad dH = n\bar{C}_P \, dT \]

\[\therefore \text{For an isothermal process involving an ideal gas:} \quad \Delta H = \Delta U = 0 \]

\[\begin{align*}
 dU &= n\bar{C}_V \, dT \\
 dH &= n\bar{C}_P \, dT
\end{align*} \]

For any pure substance @ [V]

\[\begin{align*}
 dU &= n\bar{C}_V \, dT \\
 dH &= n\bar{C}_P \, dT
\end{align*} \]

For any pure substance @ [P]

For an ideal gas

First Law Problems: heat capacity: 9, 11, 12, 66.
internal pressure coefficient $t \equiv \pi_T \equiv \left(\frac{\partial U}{\partial V} \right)_T$
internal pressure coefficient $t \equiv \pi_T \equiv \left(\frac{\partial U}{\partial V} \right)_T$

π_T is a measure of the intermolecular forces

$\pi_T < 0$
$(-slopes)$

$\pi_T > 0$
$(+slopes)$

(for stable systems)
We often encounter the following types of PD’s:

\[\left(\frac{\partial U}{\partial T} \right)_P \quad \text{and} \quad \left(\frac{\partial U}{\partial T} \right)_V \]

How do we relate one to the other?
For example, how do we relate the first in terms of the second?

The “Trick” is to “start with the 2nd and create the 1st”:

1. Begin with the total differential equation that includes the second PD:

\[U = U(T,V) \quad \Rightarrow \quad dU = \left(\frac{\partial U}{\partial T} \right)_V dT + \left(\frac{\partial U}{\partial V} \right)_T dV \]

2. Next, CREATE the first PD from this eqn by dividing by “dT”, and impose the condition of constant P on each new PD:

\[\left(\frac{\partial U}{\partial T} \right)_P = \left(\frac{\partial U}{\partial T} \right)_V + \left(\frac{\partial U}{\partial V} \right)_T \left(\frac{\partial V}{\partial T} \right)_P \]
Relationship Between C_P and C_V

\[
C_P - C_V = \left(\frac{\partial H}{\partial T} \right)_P - \left(\frac{\partial U}{\partial T} \right)_V
\]

\[
H = U + PV
\]

\[
= \left(\frac{\partial U}{\partial T} \right)_P + P \left(\frac{\partial V}{\partial T} \right)_P - \left(\frac{\partial U}{\partial T} \right)_V
\]

\[
\text{similar partial derivatives}
\]

From before, for similar PD’s:

\[
\left(\frac{\partial U}{\partial T} \right)_P = \left(\frac{\partial U}{\partial T} \right)_V + \left(\frac{\partial U}{\partial V} \right)_T \left(\frac{\partial V}{\partial T} \right)_P
\]

\[
= P \left(\frac{\partial V}{\partial T} \right)_P + \left(\frac{\partial U}{\partial V} \right)_T \left(\frac{\partial V}{\partial T} \right)_P
\]

\[
\text{work produced per unit increase in Temp.}
\]

\[
\text{energy per unit Temp required to separate the molecules against intermolecular attraction}
\]

(continued)
\[C_P - C_V = \left[P + \left(\frac{\partial U}{\partial V} \right)_T \left(\frac{\partial V}{\partial T} \right)_P \right] + + + > 0 \]

(for stable sys.; see before)

coefficient of thermal expansion \(\equiv \alpha \equiv \frac{1}{V} \left(\frac{\partial V}{\partial T} \right)_P \)

internal pressure coefficient \(\equiv \pi_T \equiv \left(\frac{\partial U}{\partial V} \right)_T \)

\[C_P - C_V = \alpha (P + \pi_T) V \]

(for any pure substance)

For an ideal gas: \[C_P - C_V = nR \] \(\Rightarrow \) \[\bar{C}_P - \bar{C}_V = R \]

\{ extra energy required to heat a mole of ideal gas by \(1^0 \) at const \(P \)
over that required to heat it at const \(V \) \}

For a solid: \[\bar{C}_P \cong \bar{C}_V \]

(continued)
\[C_P - C_V = \alpha (P + \pi_T) V \]
(for any pure substance)

\[\pi_T \equiv \left(\frac{\partial U}{\partial V} \right)_T = T \left(\frac{\partial P}{\partial T} \right)_V - P \]
(proved later, from S)

\[\left(\frac{\partial P}{\partial T} \right)_V = \frac{\alpha}{\kappa} \]
(proved later, from Euler’s Cycle Rule)

Calculate \(\pi_T \) for van der Waals gas and for another real gas.

Isothermal compressibility
\[\equiv \kappa \text{ or } \beta \equiv -\frac{1}{V} \left(\frac{\partial V}{\partial P} \right)_T \]
(“kappa”)
engineering

Coefficient of thermal expansion
\[\equiv \alpha \equiv \frac{1}{V} \left(\frac{\partial V}{\partial T} \right)_P \]

Calculate \(\alpha \) and \(\kappa \) for some real gases and compare with an ideal gas.

\[C_P - C_V = \left(\frac{\alpha^2}{\kappa} \right) TV \]
Thus, especially for liquids, it’s not enough to look just at \(\alpha \), but we need to look at \(\alpha^2/\kappa \).

Examples appear on next slide.

(continued)
\[\overline{C}_P - \overline{C}_V = \left(\alpha^2 / \kappa \right) T V \]

Coefficient of thermal expansion \(\equiv \alpha \equiv \frac{1}{V} \left(\frac{\partial V}{\partial T} \right)_p \)

Isothermal compressibility \(\equiv \kappa \equiv -\frac{1}{V} \left(\frac{\partial V}{\partial P} \right)_T \)

<table>
<thead>
<tr>
<th>Substance</th>
<th>(10^4 \alpha / K^{-1})</th>
<th>(10^6 \kappa / atm^{-1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water</td>
<td>2.1</td>
<td>49.6</td>
</tr>
<tr>
<td>Benzene</td>
<td>12.4</td>
<td>90.5</td>
</tr>
<tr>
<td>Lead</td>
<td>0.861</td>
<td>2.21</td>
</tr>
<tr>
<td>Diamond</td>
<td>0.030</td>
<td>0.187</td>
</tr>
</tbody>
</table>

Examples:

For water at \(25^0C\) : \(\overline{C}_V = 74.8 \ J/K \cdot \text{mol} \). Calculate its \(\overline{C}_P \). (Answer: 75.3 \ J/K \cdot \text{mol})

For benzene at \(25^0C\) : \(\overline{C}_P = 134 \ J/K \cdot \text{mol} \). Calculate its \(\overline{C}_V \). (Answer: 89 \ J/K \cdot \text{mol})

(Note: \(d = 0.879 \ g/mL\))

First Law Problems: heat capacity: 26-31.